Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge
نویسندگان
چکیده
CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has led to our development of USRN (ultra-silicon-rich nitride) in the form of Si7N3, that possesses a high Kerr nonlinearity (2.8 × 10-13 cm2 W-1), an order of magnitude larger than that in stoichiometric silicon nitride. Here we experimentally demonstrate high-gain optical parametric amplification using USRN, which is compositionally tailored such that the 1,550 nm wavelength resides above the two-photon absorption edge, while still possessing large nonlinearities. Optical parametric gain of 42.5 dB, as well as cascaded four-wave mixing with gain down to the third idler is observed and attributed to the high photon efficiency achieved through operating above the two-photon absorption edge, representing one of the largest optical parametric gains to date on a CMOS platform.
منابع مشابه
Energy limits imposed by two-photon absorption for pulse amplification in high-power semiconductor optical amplifiers.
We study the combined effects of dynamic gain saturation and two-photon absorption on the amplification of short pulses in semiconductor optical amplifiers and show that two-photon absorption can saturate the amplifier gain and limit the output pulse energies even for amplifiers with large gain saturation energies. We discuss the upper limits for the pulse energies obtainable from semiconductor...
متن کاملImpact of Fourth-Order Dispersion Coefficient on the Gain Spectrum and the Saturation Behavior of One-Pump Fiber Optical Parametric Amplifiers
In this paper, the gain spectrum and the saturation behavior of one-pump fiber optical parametric amplifiers (1-P FOPAs) are investigated by taking into account the fourth-order dispersion coefficient b4 in the analysis. The results show that it is necessary to consider b4 in the analysis when the wavelength difference between the signal and pump waves is large enough and/or whenever the pump w...
متن کاملImpact of Input Pump Profile on the Gain Spectrum and the Saturation Behavior of One-Pump Fiber Optical Parametric Amplifiers
In this article, the impact of input pump profile on the gain spectrum as well as the saturation behavior of one-pump fiber optical parametric amplifiers (FOPAs) is investigated. Since in practical circumstances, pump sources used for FOPAs have Lorentz-Gaussian profile instead of Gaussian, a more realistic case is considered for simulating FOPAs in this article. The results of simulations for ...
متن کاملOPTICAL PROPERTIES OF CO-EVAPORATED THIN FILMS OF BINARY Bi 0-Te 0 AND Bi 0 -V 0 SYSTEMS
Thin films of binary Bi 0 -TeO and Bi 0 -V 0 systems were prepared by the thermal co-evaporation technique in a vacuum at room temperature. The optical absorption edge of these systems are studied in the wavelength of 200-800 nm using a PERKIN-ELMER uv/Vis spectrophotometer. It is found that the value of n=3/2 in the Davis-Mott equation is best fitted for the fundamental absorption edge f...
متن کاملGain and noise characteristics of high-bit-rate silicon parametric amplifiers.
We report a numerical investigation on parametric amplification of high-bit-rate signals and related noise figure inside silicon waveguides in the presence of two-photon absorption (TPA), TPA-induced free-carrier absorption, free-carrier-induced dispersion and linear loss. Different pump parameters are considered to achieve net gain and low noise figure. We show that the net gain can only be ac...
متن کامل